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- Analytical photogrammetry involves computations for the
determination of 3D object coordinates from image
coordinates on overlapping photographs.

- The fundamental formulae are known as the collinearity
equations.

- Includes the determination of the exterior orientation of
the photos.

- Description separate for frame aerial and pushbroom
iImages.

- Push-broom images require a modified approach
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Positive directions of camera rotations



Definition of vectors in image and object sp

Image Space vector components

Xj - XO

X Yi - Yo
_ - f _

Ground or Object space vector components

X j— % C Where XC, Y¢, Z¢ are the
coordinates
Xi=| Y~ Y* of the perspective centre of the
Zi— 7€ camera

- - and Xj, Yj and Zj are the
coordinates
of | In the object space.
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elationship between image and object coordinate systems

ne differences in orientations of the image and
nject coordinate systems are expressed by the

tl

ts , ¢ and k about the image x, y and z axes respectively.

These are the rotations required to rotate an untilted coordinate
system referred to as x*, centred on the perspective centre,
Into the tilted system X

T

hat Is, after introduction of the 3 rotations, x* will be rotated

so that it is parallel to the actual titled coordinate
photograph system , x.



The effects of the rotations of w, ¢, and « can be individually expressed by orthogonal
rotation matrices, M, of the form:-
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Use the convention that the relationship between the two
coordinate systems x and x*, and M Is expressed In the
following order:-

M X*

X
where M refers to any one of the above rotation matrices

A combination of all 3 rotations can be determined by
successively multiplying the matrices together.

Adopt the order of occurrence of the tilts as o—¢p—«

Important to be consistent with this order



Apply o rotation about the x* axis.

X = M, X* 3.6

®

Apply ¢ rotation on the x, vector about y , - axis, that
IS the new position of the y coordinate after the o
rotation

0 I\/Ix
I\/II\/Ix* 3.7



Apply « rotation on the x,, vectors about z, - axis, that Is the
new position of the z coordinate after the o and ¢ rotations

X = My X

OPK

Hence X Mk M@ Mo x* 3.8

Combined Matrix M= | m31 m32 mas



M11 = COS¢p COSK

mqo = COS® Sink + Sinm SiNng COosk
mq3 = Sinm SiNnk - COS® SiN¢g COosk
Mo1 = -COS¢ Sink

Moo = COS® COSK - Sinm Sing sink
Mo3 = Sinw COSk + COSm SiNg Sink
m3q = sing

ms3o = -SIN® COS¢$

ma33 = COSm® COS¢}

The M matrix is orthogonal which means that its inverse
equals its transpose

L.e. M1 = MT



Referring again to equations 3.1 and 3.2, the relationship
between these coordinates can be written as:

X.

J A M X, 3.9

where A Is a scale factor between the two sets of coordinates

This relationship can be written in full

- Xj - Xo | - Xj - Xc
Yi - Yo = rAj M Yj - YC€
_ - _  Zy - ZC |



Let us also add additional parameters Ax;, Ay; to the
Image coordinates which represent errors (either known
or unknown) in the image coordinates x; and y;

B C

— Xj - Xg *t AX 7 Xj - X
C

Yi - Yo t+ Ay = Aj MY - Y
— - — zj - Z°

Dividing each of the first 2 equations by the 3



Collinearity Equations
-f[myg X - X%) + myz (Yj- Y©) + my3 (Zj - Z°)]
mz1 (Xj - X°) + mzz (Yj - Y°) + mz3 (Zj - Z°)

Xj - Xg +AXj =

-f[moy (X - X°) + moo (Y- YO) + moz (Zj - Z°)]
Mz1 (Xj - X°) + maz (Yj- Y°) + maz (Zj - Z°)

X;, y; are image coordinates of object |

Xy, Yo are displacement coordinates between the actual
origin of the image coordinates and the true origin

AX; , Ay; are the corrections applied to the image coordinates
f Is the camera principal distance.

X, Y, Z; are the object coordinates of point |

X¢,Yc Z°¢, are the coordinates of the camera in the

object space coordinate system

my; ... My; are the elements of rotation matrix M

Yj - Yo T Ay;



Rotation Matrix M

COS¢ COSk

- COS¢ SIink

sing

COSw Sink +
Sinw Sing Ccosk

COS® COSK -
Sinw sing sink

- SINn® COSo

Sinw SINkK -
COS® Sin¢g COSk

Sin® CcoSsk +
COSm Sin¢ Ssink

COSw COSO




- Need to determine camera position and tilts

- GNSS is available to determine positions
- IMU/INS may be available to determine tilts

- If both are available, Direct Orientation is possible provided
the data are accurate — then no control points needed

- Alternatively can use GNSS/IMU data with control points to
check the results and improve accuracy

- If no GNSS/IMU available, need a minimum of 3 control points,
preferably 4
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VY

Epipolar lines

12 unknowns
per photo pair

X,.Y;.Z



- Use geometry of the photographs together with a small
number of ground control points

- Significantly reduces the number of ground control points

- Determine the locations of a dense set of points on all
photographs

- Carried out on so-called 'blocks' of photographs, comprising a
number of strips of photographs

+ Minimum size block is 2 photos

- No limit to the maximum size of blocks






= Points selected and measured on the photographs
= Control points (Ground or Object)

= Targets
= Natural features

= Tie points
= Multiple prominent points but not necessarily identifiable features
m Selected by software and referred to image coordinate system

= Tie points are also required to connect the strips together
m Special procedures used to extract and match the points - current methods

are based on such approaches as ‘Structure from Motion’ SfM.

= Block adjustment
= |mage coordinates measured automatically by software and input to block

adjustment
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In most computations in geomatics, it is typical to take
more observations than that the minimum necessary for a

solution

Reason:

= Ensure that blunders are detected

= |mprove the accuracy of the final result

= |nclude observations of varying accuracies

= Speed up the solution by incorporating blunder detection
methods

- A least squares solution is typically used to manage redundant
observations, and determine accuracies of the solution
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- A least squares solution minimizes the
of the residuals

- Weights are a function of the accuracies of the observations

described by the variance = (standard o
- Least squares solution can only be app

weighted sum of squares

eviation)?
led on linear problems

- Method of least squares involves formu
- Solution determines

= Corrections to all image coordinate o

ation of ‘normal equations’

bservations

= Estimates of the exterior orientation of all photos and all object

point coordinates determined
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- The collinearity equations are highly non-linear

 Must be linearized by Taylor’s Series by partial differentiation

- |terative solution

- Start with some approximate values of the unknown and
determine corrections AX to those values

- Note thatin AX will be written as A indicating that it is an
estimate only



- The least squares mathematical model they will be expressed in the
form of:

AAX-b = v
where

m  Aijsreferred to the Jacobian, coefficient or design, matrix derived by
linearizing collinearity equations

= AX is the vector of corrections applied to the assumed approximate
values of the unknowns.

= bequals £- AX i.e.the vector of observations minus the evaluation
of the equation based on the approximate values of the parameters.

" Vv IS the vector of residuals to the observations.
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= The "true" image coordinates x and y are written in terms of
measured quantities x°°, y°° and residuals vy and vy also
iIncluding subscript j’ for object points and ‘I’ for photograph
number.
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Basic formulae for parameters

= The unknown parameters are expressed in terms of a
correction to an approximate value

X = X%+ AX
= For example for
Camera parameters

XC e
i A X,
- .70
N\C C
YC |
Z¢€ Ac
i _ Z°¢ N AZ,
N\ C
Wi (Dc A O
A P
of c A b
N\ _K —i N\
K| L AK)




For object points

/\
AXJ'
AYJ'
AZj




= Basic equation for least squares adjustment

. AAX-Db = v
(25
AYC A
A AX
(3.11 a1z 13 Q14 A15 316) AZC N (a17 al8 a19) A
821 822 823 824 825 826 / ;i | AH a27 a28 a29 J/ ; AI
Z ]
Ad J
\AQ / i
Matrix form
A i AXj + A jj AXj - bjj = Vij
(2, 6) (6, 1) 2,3) (3,1 (2,1) (2, 1)
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3.2  Linearised Equations2016.ppt

= Add m photographs
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mExtend equations to n points on the m photographs

A

o

(2mn, 6m) (6m, 1)

¢

Az
As
A AX
(2mn, 3n) (3n, 1)
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Adding Observation of Exterior Orientation

Parameters
] —XC—OO —
YC
ZZ \
(€Y
(PC
KC i |
o
YC
_ z°©
_ 2.
(pC
_KC_

Observations of camera parameters

Parameters in terms of approximate
values and corrections

RHS of these 2 equations are equated



B s - 00 [ -0 -
Ax© X© X© v
AY© Y© Y© vy

~C C C C
AZ _ Z . Z [ VZ
A&HC ®° ®® vE
A(’I‘)C (PC (PC VC
0]
_A]%C_I _KC_l _KC_I —V%—i
A >.( - bo — V2

Equations for observations of control point coordinates are
determined in a similar manner

(A (00— %0 Vx
AY | - | Yoo—v© = |V
A 00 o) V) .

.A’X - b3 — V3



The three sets of equations are compiled:

1. linearised form of the collinearity equations for all
observed points
2. observation equations for the camera parameters
3. observation equations for the control points

A AX + A AX - by =  V  Collinearity
y Observations of
AX - b2 =~ V2 camera parameters
°° Observations of

AX i b3 =~ V3 control points


3.3  AnalyticalPhotoObservationEqns2photos2016.pptx

Adding Covariance Matrices of the Observations

The quality of the observations are determined by their
variances (standard deviation)?

Variances must be determined for all observations for:
1. Image coordinate observations
2. Camera parameter observations
3. Control point observations

The assumption with all observations is that there Is
no correlation between any of the observations



Variances of coordinate observations of point | on
photograph 1

Ox. O Hence

Qij = P1j
2
0] Gyj 1

Qij ™

P-matrix for all coordinate observations

P11
P12




The P-matrix of the camera parameters is derived from the inverse of
variance/covariance matrix

P2i= o

No correlation exists between each of the exterior orientation parameters



Therefore the P matrix for camera parameter observations

6m,6m

Pom-1

Camera parameter
observations



The inverse of covariance matrix of the observations of the control point
coordinates of point j can be written as

No correlation exists between each of the control point parameters



Hence, the P Matrix for the control point observations is:

P31
P32

3n',3n'




The set of equations with P-matrices added

_A K_
A X

T 0) . -
A _

0 T _ _

A AX - b =

Normal equations for the least squares adjustment

ATPA AX

vV

A"Pb

P




Expanding the normal equations with each of the sub-matrices

AT P4 A + P> AT P /.A.\ B o | AT P]_b]_ + P> b2
A X B
[ X ] [ J [ X ] ( X ] | A X [ X J
| ATP]_A ATP1A+P3_ _ATP1b1+P3b3_
Written simply N AX = T

The solution of these equations can result in very large
matrices with many zeros
» Solution is divided into 2 steps where the vector A IS solved first

e Then Z will be solved

 This means that a set of Reduced Normal Equations in
terms of only A Is derived from the above:



Let the matrix be expressed in terms of the sub-matrices
as follows:

'N11 Ni12 A T1
Ni» N2z Al LTz

Forming the matrices into 2 equations comprising the sub-matrices

N11A + N12A =T1

NIZA+ N2o2A=T2



Pre-multiply the 2" equation by N3
N23 x NipA+N22A=T2
I N —1 N =Nl
N2ZN1 oA+ NN, A= NZT2
NSLNL A+ A = NZ5T
2212 227 2
o0 . . T °
Therefore A = NZ%TZ — NZ%leA

Substituting the above formula into the first of the 2 equations will

give the equation for A



Reduced Normal Equations
o 1 a1 T A _ o —1
(N12— N12N2zNj2 )A=T:— N2 N2 T

The Reduced Normal Equations have a special characteristic
They can be solved more efficiently no matter how many
unknowns have to be solved.

A typical pattern of the Reduced Normal Equations
Bandwidth minimization can be undertaken to reduce

the size of the matrix

Achieved by strategic number the photos in the adjustment
Inverse of the Normal Equation Matrix will give the estimated
accuracy of computed parameters

Estimates of accuracies of observations can also be
determined
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= Once the values of camera parameters

= Object coordinates of any additional points in two or more
Images can be computed from the collinearity equations of
these images.

= This is referred to as Space Intersection
= |n this case, only X;, Y; and Z; are the unknowns.
= There are 4 equations with 3 unknowns

= | east squares adjustment is required
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The solution involves an equation of the form
AAX -b =v

A = coefficient matrix, linearized in terms of X], Y] and Z]

AX = corrections to unknowns Xj, Yj and Zj

v = residual vector U
1 O "W

=JER

A —

|
o
H
2I<
|



Expanding out this matrix multiplication gives

i L~

AL —F |MiiTymel miz—{umsz miz—yomss
W Vv Vv Vv

_m21 Wm31 mMo22 Wm32 mM23 Wm33_

- The equations for the solution of the intersection are:

J U U ij b Vx
— ¥ Mi11— ., M31 Mi12— L, M32 M13— L, M33 _[ x:|_[}

\AY wW \AY AY j Vy
_V A Vv Az, | Lby
\YAY) _m21 w M3l M22— 19 m32 M23— 1y m33_
Where

U =m1(X j— XC)+m12(Yj—YC)+m13(Zj —Z°)
V =ma1(Xj— X% +ma(Y j—Y®)+mxa(Zj—Z°)
W =maz1(X j— X*) +ma2(Y j—Y°) + ma3(Z;—Z°)



Equations for the left hand photo

— f U _f U — f U
—(mll__m31jAXJ —(mlz——m:gszYJ —(mls__mBSJAZJ _(Xj_Ag)():Vx

W W W W W W
— f U — f U ¥ U _ (v — A0} _
W(mzl—v—vmsle X W[mzz—v—v msszYJ W[ng—v—vmgngzJ (yJ Ay) Vy

For the right hand photo

— f U — f U — f U 0
e Y e axs e — L me 1aY s = (e Dmes Az, —(x— AD =v
Y [mll W mglj X3 Y (mlz Y m32j Y 3 W (m13 W m33j Z3 i X X

— f U _f U
[m21_wm31jAXJ —(mzz__mgszYJ i(mZS_ngSJAZJ —(yj—A?/)ZVy

W W W W vy
Where
_m J m m J m m J m __X(J)_
A, 117, Mat 127 Ma2 137y Mas ;
[Ay} v v v )
_m21 W M31  M22 W M32  M23 w3 Z7 |

And ° refers to the approximate values of Xj, Yj, Zj



Intersection solution

P1 = Inverse of the covariance matrix of image coordinates
previously derived in equation 3.38

A = (AT Pl A)'l (AT P1 b)

A comprises 3 unknowns which must be solved by iteration



mErrors In observations may be a combination of:
= Accidental

= assumed to normally follow a normal distribution and are handled by the least
sguares solution

m Systematic

= aim to models these errors so that they are largely eliminated before the least
squares adjustment is undertaken,

» residual systematic errors are modelled during the adjustment by self-calibration

mBlunders

= mistakes and may be large
= will be revealed during the least squares adjustment
= must be eliminated to achieve a solution — data snooping
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- Self calibration is designed to correct for unknown systematic errors in the
Images.

- Modelled by appropriate parameters in the terms Ax; and Ay; in the collinearity
equations

-+ The formulations are based on assumptions as to their form, but they are
really unknown.

- Several sets of equations have been suggested to describe these potential
systematic errors

- Different for film and digital images

- Brown (1976) parameters are used in software to solve ADS80 (ADS40)
Images using ORIMA, but adapted to digital images

¢

=  NGERERITEERERENE
LICSMARS



- Radial lens distortion - usually known from calibration as shown on in Chapter
1.

= A typical formula is:
dr = Kir® + Kor® + Kar’ + ...

where r? = (X - Xo)2 + (Y - yO)2

- Decentring lens distortion caused by inexact alignment of lens components —
usually negligible in aerial images

- For digital images, there may be errors in the pixel mosaic
- Earth curvature — derived from known equations

- Refraction — estimated from standard atmosphere

o
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AXi= -AXg + AC.(X-X0)/C + (X-X0)SX + (Y-Yo).a + (X-Xo).r*.ky +
(X-Xo).r*ko+ (X-X0).r°.ks + {r*+ 2.(x-X0)?}.P1 + 2(X-Xo).(Y-Yo).P2

Ay = -Ayo + Ac.(Y-Yo)/c + 0+ (X-Xo).a + (Y-Yo).r*.ky +
(Y-Yo).r*Ka+ (Y-Yo).r° ks + 2(X-Xo).(Y-Yo).P1 + {r*+ 2.(y-Y0)*}.P>

Where r*= (x-Xo)* + (Y-Yo)?
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m Fritsch:

Fourier series with 16 parameters which are said to be
theoretically preferred

R. Tang, D. Fritsch, M. Cramer New rigorous and flexible
Fourier self-calibration models for airborne camera calibration,
ISPRS Journal of Photogrammetry and Remote Sensing 71
(2012): 76-85



+ Since observations are often highly correlated, the impact of
an error at a point will distributed to other points

- Multiple blunders are often difficult to isolate

- It may be necessary to do several runs of an adjustment to
locate all blunders

- Some solutions are available for dealing with multiple errors
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77777 = A method that aims to automaﬁcally eliminate the blunders

= Applies weights to observation according to the magnitude of the residuals

after each iteration in the adjustment
= \Weights are inversely proportional to magnitude of residuals

= Observations with near zero residuals should receive a large weight

= Observations with large residuals should receive low weights
1

= Typical weighting function p: 0=
1+ (alv))®

m \Where v Is the observation residual after an iteration

= anda>0andb>0
= Block adjustment software may include robust estimation as an option
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Exterior Orientation of Aerial Pushbroom and Whiskbroom

Images

1. Simple transformations for 2D only

Uses an empirical function based on a minimum of GCPs for a 2D
transformation only

X1 =a1+as.X+a3.Y +a4 X +as X +asX.Y +arx.y+asx. ¥ +as¥ +anc¥"
Yr=bi+be.x+bs.y+bsx"+bsx’ +bex.y+brx".y +bax. ¥ +bo¥" + bio¥”
where Xy,YT are the transformed object coordinates

X and y are the image coordinates
a,a.......bp are unknown parameters of the transformation

These transformations are usually more suited to satellite
Images since distortions due to elevations are likely to be smaller.
Sub-pixel accuracy usually achievable.



1. Simple transformations for 2D only
These formulas incorporating effects of elevations are:

DLT (well-known from close range photogrammetry)
X=(LX+LY+L,Z+L4)/(LX+L,j)Y+LZ+1)
y=(LeX+ LY +L.Z+ Lg)/(LgX + LY + L, Z+1)

Affine transformation with elevation correction.
X=AX+AY +AZ+A,
Yy =AX+AY + A Z + Ag



2. Rigorous Solution for PushBroom and

Whiskbroom Scanners

Collinearity equations can be based on the assumption that

each individual scan line in the image Is recorded instantaneously.

A set of collinearity equations is defined for each scan line.

Assumptions made about the changes in exterior parameters or the are based

on GNSS/IMU data



3.4 Orientation of pushbrrom aerial images.pptx
3.4 Orientation of pushbrrom aerial images.pptx
3.4 Orientation of pushbrrom aerial images.pptx
3.4 Orientation of pushbrrom aerial images.pptx
3.4 Orientation of pushbrrom aerial images.pptx
3.5 Satellite pushbroom images.pptx

