作者: Xu, C (Xu, Chuan); Sui, HG (Sui, Haigang); Xu, F (Xu, Feng)
|
摘要: Land surface water mapping is one of the most basic classification tasks to distinguish water bodies from dry land surfaces. In this paper, a water mapping method was proposed based on multi-scale level sets and a visual saliency model (MLSVS), to overcome the lack of an operational solution for automatically, rapidly and reliably extracting water from large-area and fine spatial resolution Synthetic Aperture Radar (SAR) images. This paper has two main contributions, as follows: (1) The method integrated the advantages of both level sets and the visual saliency model. First, the visual saliency map was applied to detect the suspected water regions (SWR), and then the level set method only needed to be applied to the SWR regions to accurately extract the water bodies, thereby yielding a simultaneous reduction in time cost and increase in accuracy; (2) In order to make the classical Itti model more suitable for extracting water in SAR imagery, an improved texture weighted with the Itti model (TW-Itti) is employed to detect those suspected water regions, which take into account texture features generated by the Gray Level Co-occurrence Matrix (GLCM) algorithm, Furthermore, a novel calculation method for center-surround differences was merged into this model. The proposed method was tested on both Radarsat-2 and TerraSAR-X images, and experiments demonstrated the effectiveness of the proposed method, the overall accuracy of water mapping is 98.48% and the Kappa coefficient is 0.856.
|