首页 >> 科学研究 >> 科研成果 >> 正文

Feasibility Study of Multi-Wavelength Differential Absorption LIDAR for CO2 Monitoring

2016-11-30
  • 阅读:

作者: Xiang, CZ (Xiang, Chengzhi); Ma, X (Ma, Xin); Liang, AL (Liang, Ailin); Han, G (Han, Ge); Gong, W (Gong, Wei); Yan, F (Yan, Fa)

来源出版物: ATMOSPHERE 卷: 7 期: 7 文献号: 89 DOI: 10.3390/atmos7070089 出版年: JUL 2016

摘要: To obtain a better understanding of carbon cycle and accurate climate prediction models, highly accurate and temporal resolution observation of atmospheric CO2 is necessary. Differential absorption LIDAR (DIAL) remote sensing is a promising technology to detect atmospheric CO2. However, the traditional DIAL system is the dual-wavelength DIAL (DW-DIAL), which has strict requirements for wavelength accuracy and stability. Moreover, for on-line and off-line wavelengths, the system's optical efficiency and the change of atmospheric parameters are assumed to be the same in the DW-DIAL system. This assumption inevitably produces measurement errors, especially under rapid aerosol changes. In this study, a multi-wavelength DIAL (MW-DIAL) is proposed to map atmospheric CO2 concentration. The MW-DIAL conducts inversion with one on-line and multiple off-line wavelengths. Multiple concentrations of CO2 are then obtained through difference processing between the single on-line and each of the off-line wavelengths. In addition, the least square method is adopted to optimize inversion results. Consequently, the inversion concentration of CO2 in the MW-DIAL system is found to be the weighted average of the multiple concentrations. Simulation analysis and laboratory experiments were conducted to evaluate the inversion precision of MW-DIAL. For comparison, traditional DW-DIAL simulations were also conducted. Simulation analysis demonstrated that, given the drifting wavelengths of the laser, the detection accuracy of CO2 when using MW-DIAL is higher than that when using DW-DIAL, especially when the drift is large. A laboratory experiment was also performed to verify the simulation analysis.